
MOVEMENT OF TNPLICIT PAFALLEL AND VECTOR EXPRESSIONS 

OUT OF PROGRAM LOOPS 

Paul B. Schneck 

Institute for Space St$lies 
NewYork, K. Y. 10025 

h'd3- 7 0  14 1 

, 



. 

ABSTRACT 

The concept of "interference" is introduced and related to the problem of 

transforming implicit parallel and vecior operations to an explicit form. Statement 

types and constructs which cause interference are identified. Programming tech- 

niques which avoid use of potentially interfering statements result in programs 

which are better suited for operation on parall& and vector processors. 

The analysis of the inhibiting effect of interfering statements on the motion 

of paralZeI and vector expressions has been implemented and demonstrated as an 

addition to an existing compiler which reco,gnizes parallelism implicit in serial 
- .  

. .  

... 



. .  

MOVEMENT O F  llLIYLICIT PARALLEL AND VECTOR EXPRESSIOKS 

OUT OF PROGRAM LOOPS 

MTRODG CTION 

This piper discusses the ability to move statements or  expressions out-of 
_-...--. 

the range of a program loop so that serial operations may be replaced by parallel 

or vector* operations. An earlier paper @check,  1972) described the recognition 

of implicit parallel expressions in a high level language. This paper deals with 

the treatment of such expressions after recognition. W e  define the conditions 

which permit or inhibit the movement of potentially parallel xpressims o:it of 

program loops. 

MOTION O F  EXPRESSIONS 

The ideal disposition of a parallel expression within a program loop is re- 

moval and execution outside the loop. If there were no %nterferencetI all such 

expressions could be moved in front of the loop 'and their results used within the 

loop. Figure l a  is an example of a program loop which contains no statements 

interfering with the motion of parallel statements. Al l  parallel statements are  

removed from the loop as shown in Figure lb. If interfering statements are 

* 
For thc rcmaincler of this paper n-e will use  the tcim "paralleltt in place of t5c 
bulky t'pm::llel o r  vector. 



- .  . 

present the situation gets quite complex. When one statement cannot be moved it 

may prevent another from being moved. The next sections examine relationships 

between statements and their effect on the "moveability" of a statement. 

DIRECTION O F  MOTION 

The example given above illustrated upward motion of parallel expressions. 

That is, a parallel expression was moved to precede the loop in which it originally 

appeared. This is the most natural formulation in the context of a (locally) first- 

to-last sequence of statement analysis: statement ordering is preserced without 

regard to any poteptial interfmence. * 

A statement which cannot be moved (upwardj to precede a loop is examined 

to determine whether it can be moved (downward) to follow the loop. An interfer- 

. ing statement acts as a barrier to the passage of certain variables. Figure 2 

illustrates forms of interference which may occur. The important point is that 

regardless of the configuration of interfering statements a program loop will be 

divided into at most three regions: first, a region permitting only upward motion; 

second a region surrounded by (the extreme) interfering statements and not per- 

mitting any motion; third a region permitting only downward motion. As shown, 

one o r  two of these regions may be null. 

* 
Interfcrcncc, wl~ich has still not been defiiicd is a function of thc variables. A 
statement may interfere with only some, but not all, variables. 



. .  

- .  . 

INTERFERENCE AND MOVEMENT 

An expression which cannot be moved is said to be an interfering expression. 

There are three types of interfering expressions: 

1. 

2. 
r 

3. 

An expression in a non-arithmetic statement (&go READ, CALL, etc.) 

which must be performed in a loop. 

An expression which is not a function solely of constants, relative 

constants, and parallel operands (e. g. A(I)*J). 

4’ 
. I  - 

Any expression which may not be performed in parallel -- for the 

above reasons, o r  because recursive relationships will not permit 

parallel operation (e. g. A (I+l)=A (I)+A (I-1)). 

An interfering e’xpression may limit the movement of otherwise moveable expres- 

sions. Figure 3 details an example of the effects of interfering expressions. 
* 

An interfering definition is a barrier to the movemext of both uses and 

definitions. Any uses moved across a definition will employ the wrong (old) 

values. Definitions moved across a definition will be nullified by the one they 

originally followed. 

An interfering use is also a barrier to the movement of definitious. Defini- 

tions moved across a use will result in the premature replacement and use of old 

values by new. However, interfering uses do not inhibit the movement of other 

uses -- there is no conflict betwen use nnr! definition in this case. 



The relationship between interfering statements and otlicr staterncnts may 

be sunimarized in tabular form: 

Interfering Variable 
. .  . 

REFERENCE I Variable 

I 

RE FE RE NC E DEFINITION -1 
MOVE INHIBIT 

INHIBIT . INHIBIT 

IM PLEII. E NTATION: INTERFERENCE NJMBERS 

A pair of lfinterfercnce numbersf', updated as successive statements a re  

processed, ckscribc t k  i i i ~ t ~ ~ i t ~ ~ i c ~ ~  moveabiliiy of each variabie. The numbers 

hold a variable's status k t h  respect to references and definitions. A reexamina- 

tion of Figure 2 will show that there are  only three possible configurations invol- 

ving the'use of a variable and interfering expressions: . 

a) The variable precedes any interfering expressions. 

g) The variable follows all interfering expressions. 

y) The variable is between interfcring expressions, 

"lie first configuration includes the case in which there arc  no interfering state- 

mciits. 



Because of the need to determine the ex-treme interfering expressions for a 

variable, two passes over the text are required. All interference numbers are 

initialized to zero. During the first pass, which is necessary for optimization and 

information gathering, the defhition and/or reference interference numbers are 

set to the statement position whenever an interfering expression is encountered. 

If the interfering e,vpression is a definition, which can inhibit the movement of 

references and definitions, both interfcrence numbers'will be set. If the interfer- 

ing expression is a reference, which can only inhibit the rnovemcnt of definitions, 

then only the referencc interference number is set. Thus, at the end of the first 

&' 

pass the interference numbers indicate the position of the last interfering e-xpres- 

sion for each vaiaXe. 
.... 

An interference number which remains at zero indicates that no interfering 

expressions are present. Those interference numbers which are not zero are 

adjusted to in& cate the statement at which downward motion becomes permissible. 

When the parallcl nature of a variable is clestroycd it cmfiot be recovcred until a 

later point where all paths affecting fhe variable have rejoined as illustrated in 

Figure 4. During the second P ~ S S ,  when output code is generated, variables 

will be moved up to permit parallel operations unless flagged otherwise. Flag- 

ging of the interl'crence nnnibcr componml s occurs wlxm a variable is used 



- .  . 

number is reached the fl,% will be reset to indicate that downward motion is 

possible. In cases of conflict, e.g. where the reference flag indicates upward 

motion is possible and the definition-flag indicates downward motion, both condi- 

tions must be satisfied; in this instance there \vi11 be no motion. 

CONCLUSION 

Conditions affecting the movement of potentially b parallel expressions out of 

program loops are described, and the results of a working model of this treatment 

are illustrated. The constructs inhibiting movement of parallel expressions may 

be related to current programming techniques in an effort to minimize situations 

where they occur. 

REFERENCE 

. Sclmeck, P. B., "Automatic Reco,gition of Parallel/Vector Operations in a 

Higher Level Language", Proceedings ACM I972 National Conference. 



._ 
(a) CRiGINAL PRGGRAM 



a) U 

d) 

4 

Bil x - x  x x  I 
I- 

b) 

_a 

.(- x x x  x x  T 
- 

C )  

f) 



L 

. -. 



Position 
I 
2 '  
3 
4 .- 
5 
6 
7 
8 
9 
IO 
I t  

Block 

1 i 2 

3 

4 I .-- 5 

Pass 2 

I 


